题目内容
如图,在
轴右侧的动圆⊙
与⊙
:
外切,并与
轴相切.
(Ⅰ)求动圆的圆心
的轨迹
的方程;
(Ⅱ)过点
作⊙
:
的两条切线,分别交
轴于
两点,设
中点为
.求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232024053266404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202404999310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405030289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405045320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405061677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202404999310.png)
(Ⅰ)求动圆的圆心
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405030289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405108215.png)
(Ⅱ)过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405030289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405139353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405155673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202404999310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405186423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405201396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405217697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405311337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232024053266404.png)
(Ⅰ)由题意,点
到点
的距离等于它到直线
的距离,故
是抛物线,方程为
(
).…………………………………
分
注:由
化简同样给分;不写
不扣分.
(Ⅱ)设
(
),切线斜率为
, 则切线方程为
,即
.…………………………
分
由题意,
的圆心
到切线的距离
,…………………………
分
两边平方并整理得:
.……………………
分
该方程的两根![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405747456.png)
就是两条切线的斜率,由韦达定理:
. ①
另一方面,在
,
中
令
可得
两点的纵坐标
,
,故
, ②
将①代入②,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405935721.png)
,……………………………
分
故
的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405030289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405357431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405373333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405108215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405404526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405420401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405435259.png)
注:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405451769.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405420401.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405498641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405513398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405529312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405560813.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405591860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405607290.png)
由题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405155673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405638452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405669920.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405685306.png)
两边平方并整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232024057011126.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405716291.png)
该方程的两根
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405747456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405763164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232024057791081.png)
另一方面,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405794832.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405810842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405825164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405841365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405186423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405888701.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405903710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232024059191192.png)
将①代入②,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405935721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405950577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405966290.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405311337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202405997894.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目