题目内容
【题目】已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若 =0,则k= .
【答案】8
【解析】解:抛物线C:y2=4x的焦点为F(1,0),∴直线AB的方程为y=k(x﹣1),设A(x1 , y1),B(x2 , y2),
联立方程组 ,整理得:k2x2﹣(2k2+4)x+k2=0,
则x1+x2= =2+ .x1x2=1.
∴y1+y2=k(x1+x2)﹣2k= ,y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2﹣(x1+x2)+1]=﹣4,
∵ =0,(x1 , y1﹣2)(x2 , y2﹣2)=0,即x1x2+y1y2﹣2(y1+y2)+4=0,解得:k=8.
所以答案是:1.
练习册系列答案
相关题目
【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
总计 | 105 |
已知在全部105人中随机抽取1人为优秀的概率为.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?
参考公式:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |