题目内容
【题目】已知f(x)=x3﹣3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是 .
【答案】0<m<3+4
【解析】解:f(x)=x3﹣3x+3+m,求导f′(x)=3x2﹣3由f′(x)=0得到x=1或者x=﹣1, 又x在[0,2]内,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
则f(x)min=f(1)=m+1,f(x)max=f(2)=m+5,f(0)=m+3.
∵在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是构成直角三角形,
∴(m+1)2+(m+1)2<(m+5)2 , 即m2﹣6m﹣23<0,解得3﹣4 <m<3+4
又已知m>0,∴0<m<3+4 .
所以答案是:0<m<3+4 .
【考点精析】掌握利用导数研究函数的单调性和函数的极值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
【题目】为了增强环保意识,某社团从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:
优秀 | 非优秀 | 总计 | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(2)为参加市举办的环保知识竞赛,学校举办预选赛,现在环保测试优秀的同学中选3人参加预选赛,已知在环保测试中优秀的同学通过预选赛的概率为,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.
附:=
0.500 | 0.400 | 0.100 | 0.010 | 0.001 | |
0.455 | 0.708 | 2.706 | 6.635 | 10.828 |