题目内容
【题目】如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.
(1)若,证明:平面平面;
(2)若三棱锥的体积为,求二面角的余弦值.
【答案】(1)见解析(2)
【解析】
(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.
(2) 过作交于,由为的中点,结合已知有平面.
则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.
(1)证明:平面,平面,
,又四边形为正方形,
.
又、平面,且,
平面..
中,,为的中点,
.
又、平面,,
平面.
平面,平面平面.
(2)解:过作交于,如图
为的中点,,.
又平面,平面.
,.
所以,又、、两两互相垂直,以、、为坐标轴建立如图所示的空间直角坐标系.,,,
设平面的法向量,则
,即.
令,则,..
平面的一个法向量为
.
二面角的余弦值为.
练习册系列答案
相关题目
【题目】每年9月第三周是国家网络安全宣传周.某学校为调查本校学生对网络安全知识的了解情况,组织了《网络信息辨析测试》活动,并随机抽取50人的测试成绩绘制了频率分布直方图如图所示:
(1)某学生的测试成绩是75分,你觉得该同学的测试成绩低不低?说明理由;
(2)将成绩在内定义为“合格”;成绩在内定义为“不合格”.①请将下面的列联表补充完整; ②是否有90%的把认为网络安全知识的掌握情况与性别有关?说明你的理由;
合格 | 不合格 | 合计 | |
男生 | 26 | ||
女生 | 6 | ||
合计 |
(3)在(2)的前提下,对50人按是否合格,利用分层抽样的方法抽取5人,再从5人中随机抽取2人,求恰好2人都合格的概率.附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.65 | 10.828 |
.