题目内容
【题目】若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:
①为的重心;
②;
③当时,平面;
④当三棱锥的体积最大时,三棱锥外接球的表面积为.
其中,所有正确结论的序号是________________.
【答案】①②③
【解析】
①点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以①是正确的;
②取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以②正确;
③若设,则由可得,然后对应边成比例,可解,所以③正确;
④由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平面的距离最大,此时为棱长为的正四面体,其外接球半径,则球,所以④错误.
因为,连接,则有平面平面为正三角形,所以为正三角形的中心,也是的重心,所以①正确;
由平面,可知平面平面,记,
由,可得平面平面,则,所以②正确;
若平面,则,设由得,易得,由,则,由得,,解得,所以③正确;
当与重合时,最大,为棱长为的正四面体,其外接球半径,则球,所以④错误.
故答案为:①②③
练习册系列答案
相关题目