题目内容
【题目】如图,三棱柱中,侧面是菱形,其对角线的交点为,且.
(1)求证:平面;
(2)设,若直线与平面所成的角为,求二面角的正弦值.
【答案】(1)见解析;(2).
【解析】
(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;
2建立空间直角坐标系,利用向量知识求解即可.
(1)证明:∵四边形是菱形,
,
平面
平面,
又是的中点,
,
又
平面
(2)
∴直线与平面所成的角等于直线与平面所成的角.
平面,
∴直线与平面所成的角为,即.
因为,则在等腰直角三角形中,
所以.
在中,由得,
以为原点,分别以为轴建立空间直角坐标系.
则
所以
设平面的一个法向量为,
则,可得,
取平面的一个法向量为,
则,
所以二面角的正弦值的大小为.
(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)
【题目】自2017年起,部分省、市陆续实施了新高考,某省采用了“”的选科模式,即:考试除必考的语、数、外三科外,再从物理、化学、生物、历史、地理、政治六个学科中,任意选取三科参加高考,为了调查新高考中考生的选科情况,某地区调查小组进行了一次调查,研究考生选择化学与选择物理是否有关.已知在调查数据中,选物理的考生与不选物理的考生人数相同,其中选物理且选化学的人数占选物理人数的,在不选物理的考生中,选化学与不选化学的人数比为.
(1)若在此次调查中,选物理未选化学的考生有100人,试完成下面的列联表:
选化学 | 不选化学 | 合计(人数) | |
选物理 | |||
不选物理 | |||
合计(人数) |
(2)根据第(1)问的数据,能否有99%把握认为选择化学与选择物理有关?
(3)若研究得到在犯错误概率不超过0.01的前提下,认为选化学与选物理有关,则选物理又选化学的人数至少有多少?(单位:千人;精确到0.001)
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |