题目内容

16.已知数列{an}中a1=$\frac{1}{2}$,函数f(x)=$\frac{2x}{1+x}$.
(1)若正项数列{an}满足an+1=f(an),试求出a2,a3,a4,由此归纳出通项an,并加以证明;
(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}的前项和为Tn,且bn=$\frac{{a}_{n}}{{2}^{n}+1}$,求证:Tn$<\frac{1}{2}$.

分析 (1)通过对an+1=$\frac{2{a}_{n}}{1+{a}_{n}}$两边同时取倒数、变形可知数列{$\frac{1}{{a}_{n}}$-1}是以1为首项、$\frac{1}{2}$为公比的等比数列,进而计算可得结论;
(2)通过an+1≤$\frac{2{a}_{n}}{1+{a}_{n}}$(n∈N*)变形可知$\frac{\frac{1}{{a}_{n+1}}-1}{\frac{1}{{a}_{n}}-1}$≥$\frac{1}{2}$,进而累乘得:$\frac{\frac{1}{{a}_{n}}-1}{\frac{1}{{a}_{1}}-1}$≥$\frac{1}{{2}^{n-1}}$,进而an≤$\frac{{2}^{n-1}}{{1+2}^{n-1}}$,通过裂项、放缩可知bn≤$\frac{1}{1+{2}^{n-1}}$-$\frac{1}{{1+2}^{n}}$,并项相加即得结论.

解答 证明:(1)依题意,a2=$\frac{2{a}_{1}}{1+{a}_{1}}$=$\frac{2•\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{2}{3}$,
a3=$\frac{2{a}_{2}}{1+{a}_{2}}$=$\frac{2•\frac{2}{3}}{1+\frac{2}{3}}$=$\frac{4}{5}$,
a4=$\frac{2{a}_{3}}{1+{a}_{3}}$=$\frac{2•\frac{4}{5}}{1+\frac{4}{5}}$=$\frac{8}{9}$,
由此归纳得出:an=$\frac{{2}^{n-1}}{{1+2}^{n-1}}$;
证明如下:
∵an+1=$\frac{2{a}_{n}}{1+{a}_{n}}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1+{a}_{n}}{2{a}_{n}}$=$\frac{1}{2}•$$\frac{1}{{a}_{n}}$+$\frac{1}{2}$,
∴$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{2}•$($\frac{1}{{a}_{n}}$-1),
∴数列{$\frac{1}{{a}_{n}}$-1}是以1为首项、$\frac{1}{2}$为公比的等比数列,
∴$\frac{1}{{a}_{n}}$-1=$\frac{1}{{2}^{n-1}}$,
∴an=$\frac{1}{1+\frac{1}{{2}^{n-1}}}$=$\frac{{2}^{n-1}}{{1+2}^{n-1}}$;
(2)∵an+1≤f(an)=$\frac{2{a}_{n}}{1+{a}_{n}}$(n∈N*),
∴$\frac{1}{{a}_{n+1}}$-1≥$\frac{1}{2}•$($\frac{1}{{a}_{n}}$-1),
∴$\frac{\frac{1}{{a}_{n+1}}-1}{\frac{1}{{a}_{n}}-1}$≥$\frac{1}{2}$,
累乘得:$\frac{\frac{1}{{a}_{n}}-1}{\frac{1}{{a}_{1}}-1}$≥$\frac{1}{{2}^{n-1}}$,
∴$\frac{1}{{a}_{n}}$-1≥$\frac{1}{{2}^{n-1}}$,即an≤$\frac{1}{1+\frac{1}{{2}^{n-1}}}$,
∴an≤$\frac{{2}^{n-1}}{{1+2}^{n-1}}$,
∵bn=$\frac{{a}_{n}}{{2}^{n}+1}$≤$\frac{\frac{{2}^{n-1}}{1+{2}^{n-1}}}{1+{2}^{n}}$=$\frac{{2}^{n-1}}{(1+{2}^{n})(1+{2}^{n-1})}$=$\frac{1}{1+{2}^{n-1}}$-$\frac{1}{{1+2}^{n}}$,
∴Tn≤$\frac{1}{1+{2}^{0}}$-$\frac{1}{1+{2}^{1}}$+$\frac{1}{1+{2}^{1}}$-$\frac{1}{{1+2}^{2}}$+…+$\frac{1}{1+{2}^{n-1}}$-$\frac{1}{{1+2}^{n}}$
=$\frac{1}{2}$-$\frac{1}{{1+2}^{n}}$
<$\frac{1}{2}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网