题目内容

20.如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D.连结CF交AB于点E,OA=3,DB=3,则DE=3$\sqrt{3}$.

分析 连接OF,利用切线的性质及角之间的互余关系得到DF=DE,再结合切割线定理证明DE2=DB•DA,即可求出DE.

解答 解:连结OF.
∵DF切⊙O于F,∴∠OFD=90°,
∴∠OFC+∠CFD=90°.
∵OC=OF,
∴∠OCF=∠OFC.
∵CO⊥AB于O,
∴∠OCF+∠CEO=90°.
∴∠CFD=∠CEO=∠DEF,
∴DF=DE.
∵DF是⊙O的切线,∴DF2=DB•DA.
∴DE2=DB•DA,
∵OA=3,DB=3,
∴DE2=DB•DA=3×9=27,
∴DE=3$\sqrt{3}$.
故答案为:3$\sqrt{3}$.

点评 本题主要考查了与圆有关的比例线段、圆的切线的性质定理的应用,属于基础题之列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网