题目内容
10.复数$\frac{i}{1+2i}$(i是虚数单位)的虚部是( )A. | $\frac{2}{5}$ | B. | -$\frac{2}{5}$ | C. | -$\frac{1}{5}$ | D. | $\frac{1}{5}$ |
分析 利用复数的运算法则、虚部的定义即可得出.
解答 解:复数$\frac{i}{1+2i}$=$\frac{i(1-2i)}{(1+2i)(1-2i)}$=$\frac{i+2}{5}$的虚部为$\frac{1}{5}$.
故选:D.
点评 本题考查了复数的运算法则、虚部的定义,属于基础题.
练习册系列答案
相关题目
20.已知数列{an},点{n,an}在函数$f(x)=sin(πx+\frac{π}{3})$的图象上,则a2015的值为( )
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
1.对抛物线y=$\frac{1}{4}$x2,下列描述正确的是( )
A. | 开口向上,焦点为(0,1) | B. | 开口向右,焦点为(1,0) | ||
C. | 开口向上,焦点为(0,$\frac{1}{16}$) | D. | 开口向右,焦点为($\frac{1}{16}$,0) |
15.命题“关于x的不等式x2-ax+4>0在(0,+∞)上恒成立”的否定是( )
A. | ?x∈(-∞,0),x2-ax+4>0 | B. | ?x∈(-∞,0),x2-ax+4>0 | ||
C. | ?x∈(0,+∞),x2-ax+4≤0 | D. | ?x∈(0,+∞),x2-ax+4≤0 |
2.因为正切函数是奇函数,f(x)=tan(x2+1)是正切函数,所以f(x)=tan(x2+1)是奇函数,以上推理( )
A. | 结论正确 | B. | 大前提不正确 | C. | 小前提不正确 | D. | 全不正确 |
19.在高200m的山顶上,测得山下一塔顶和塔底的俯角(从上往下看,视线与水平线的夹角)分别为30°,60°,则塔高为( )
A. | $\frac{200}{3}$m | B. | $\frac{200\sqrt{3}}{3}$m | C. | $\frac{400}{3}$m | D. | $\frac{400\sqrt{3}}{3}$m |