题目内容
【题目】设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求实数m的取值范围;
(2)当x∈R时,不存在元素x使x∈A与x∈B同时成立,求实数m的取值范围.
【答案】(1) 2≤m≤3;(2) {m|m<2或m>4}.
【解析】试题分析:(1)根据B是A的子集,分别讨论集合B是空集和不是空集两类,限制端点的大小关系,列出不等式组,解出m的范围;(2) 根据不存在元素x使x∈A与x∈B同时成立,分别讨论集合B是空集和不是空集两类,限制端点的大小关系,列出不等式组,解出m的范围
试题解析:(1)当m+1>2m-1,即m<2时,B=,满足BA.
当m+1≤2m-1,即m≥2时,要使BA成立,
只需,即2≤m≤3.
综上,当BA时,m的取值范围是{m|m≤3}.
(2)∵x∈R,且A={x|-2≤x≤5},
B={x|m+1≤x≤2m-1},
又不存在元素x使x∈A与x∈B同时成立,
∴当B=,即m+1>2m-1,得m<2时,符合题意;
当B≠,即m+1≤2m-1,得m≥2时,
或,解得m>4.
综上,所求m的取值范围是{m|m<2或m>4}.
练习册系列答案
相关题目
【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中点,平面PAC⊥平面ABCD.
(1)证明:ED∥平面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.