题目内容
【题目】数列{an}是公比为q(q>1)的等比数列,其前n项和为Sn . 已知S3=7,且3a2是a1+3与a3+4的等差数列. (Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设bn= ,cn=bn(bn+1﹣bn+2),求数列{cn}的前n项和Tn .
【答案】解:(Ⅰ)依题意, ,解得: , ∴数列{an}的通项公式an=2n﹣1;
(Ⅱ)∵bn= = ,cn=bn(bn+1﹣bn+2)= ( ﹣ )=( ﹣ )﹣ ( ﹣ ),
∴Tn=c1+c2+…+cn=[(1﹣ )﹣ ( ﹣ )]+[( ﹣ )﹣ ( ﹣ )]+…+[( ﹣ )﹣ ( ﹣ )]
=(1﹣ )﹣ (1﹣ + ﹣ + ﹣ +…+ ﹣ )
= ﹣ (1+ ﹣ ﹣ )
= ﹣ .
【解析】(Ⅰ)依题意,可得, ,解得首项与公比,即可求得等比数列{an}的通项公式an;(Ⅱ)由an=2n﹣1可得bn= = ,cn=bn(bn+1﹣bn+2)=( ﹣ )﹣ ( ﹣ ),利用裂项法与分组求和法即可求得数列{cn}的前n项和Tn .
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.
【题目】某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
组号 | 第一组 | 第二组 | 第二组 | 第四组 |
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 6 | 4 | 22 | 20 |
频率 | 0.06 | 0.04 | 0.22 | 0.20 |
组号 | 第五组 | 第六组 | 第七组 | 第八组 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 18 | a | 10 | 5 |
频率 | b | 0.15 | 0.10 | 0.05 |
(1)若频数的总和为c,试求a,b,c的值;
(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,令第七组被抽中的学生数为随机变量ξ,求随机变量ξ的分布列和数学期望;
(3)估计该校本次考试的数学平均分.