题目内容

【题目】在平面直角坐标系xOy中,曲线C1 (φ为参数,实数a>0),曲线C2 (φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤ )与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α= 时,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA||OB|的最大值.

【答案】解:(Ⅰ)由曲线C1 (φ为参数,实数a>0), 化为普通方程为(x﹣a)2+y2=a2 , 展开为:x2+y2﹣2ax=0,
其极坐标方程为ρ2=2aρcosθ,即ρ=2acosθ,由题意可得当θ=0时,|OA|=ρ=1,∴a=
曲线C2 (φ为参数,实数b>0),
化为普通方程为x2+(y﹣b)2=b2 , 展开可得极坐标方程为ρ=2bsinθ,
由题意可得当 时,|OB|=ρ=2,∴b=1.
(Ⅱ)由(I)可得C1 , C2的方程分别为ρ=cosθ,ρ=2sinθ.
∴2|OA|2+|OA||OB|=2cos2θ+2sinθcosθ=sin2θ+cos2θ+1= +1,
∵2θ+ ,∴ +1的最大值为 +1,
当2θ+ = 时,θ= 时取到最大值
【解析】(I)由曲线C1 (φ为参数,实数a>0),利用cos2φ+sin2φ=1即可化为普通方程,再利用极坐标与直角坐标互化公式即可得出极坐标方程,进而得出a的值.同理可得b的值.(II)由(I)可得C1 , C2的方程分别为ρ=cosθ,ρ=2sinθ.可得2|OA|2+|OA||OB|=2cos2θ+2sinθcosθ= +1,利用三角函数的单调性与值域即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网