题目内容
【题目】在平面直角坐标系xOy中,曲线C1: (φ为参数,实数a>0),曲线C2: (φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤ )与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α= 时,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA||OB|的最大值.
【答案】解:(Ⅰ)由曲线C1: (φ为参数,实数a>0), 化为普通方程为(x﹣a)2+y2=a2 , 展开为:x2+y2﹣2ax=0,
其极坐标方程为ρ2=2aρcosθ,即ρ=2acosθ,由题意可得当θ=0时,|OA|=ρ=1,∴a= .
曲线C2: (φ为参数,实数b>0),
化为普通方程为x2+(y﹣b)2=b2 , 展开可得极坐标方程为ρ=2bsinθ,
由题意可得当 时,|OB|=ρ=2,∴b=1.
(Ⅱ)由(I)可得C1 , C2的方程分别为ρ=cosθ,ρ=2sinθ.
∴2|OA|2+|OA||OB|=2cos2θ+2sinθcosθ=sin2θ+cos2θ+1= +1,
∵2θ+ ∈ ,∴ +1的最大值为 +1,
当2θ+ = 时,θ= 时取到最大值
【解析】(I)由曲线C1: (φ为参数,实数a>0),利用cos2φ+sin2φ=1即可化为普通方程,再利用极坐标与直角坐标互化公式即可得出极坐标方程,进而得出a的值.同理可得b的值.(II)由(I)可得C1 , C2的方程分别为ρ=cosθ,ρ=2sinθ.可得2|OA|2+|OA||OB|=2cos2θ+2sinθcosθ= +1,利用三角函数的单调性与值域即可得出.
【题目】为了解人们对于国家新颁布的“生育二孩放开”政策的热度,现在对某市年龄在35岁的人调查,随机选取年龄在35岁的100人进行调查,得到他们的情况为:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列联表,并判断有多大的把握认为“支持生二孩与性别有关”?
支持生二孩 | 不支持生二孩 | 合计 | |
男性 | |||
女性 | |||
合计 |
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在被调查的人员中,按分层抽样的方法从支持生二孩的人中抽取6人,再用简单随机抽样的方法从这6人中随机抽取2人,求这2人中恰好有1名男性的概率;
(Ⅲ)以上述样本数据估计总体,从年龄在35岁人中随机抽取3人,记这3人中支持生二孩且为男性的人数为X,求X的分布列和数学期望.