题目内容

已知函数f(x)=x2-(2a+1)x+alnx.
(Ⅰ)当a=1时,求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在区间[1,e]上的最小值;
(Ⅲ)设g(x)=(1-a)x,若存在x0∈[
1
e
,e]
,使得f(x0)≥g(x0)成立,求实数a的取值范围.
f(x)的定义域为x>0
(I)将a=1代入f(x)得f(x)=)=x2-3x+lnx
所以f′(x)=2x-3+
1
x
=
2x2-3x+1
x

令f′(x)>0得0<x<
1
2
或x>1

所以函数的单调增区间(0,
1
2
),(1,+∞)

(II)f′(x)=2x-(2a+1)+
a
x
=
2x2-(2a+1)x+a
x

令f′(x)=0得x=
1
2
(舍)或x=a

当a≤1时,在区间[1,e]上,f′(x)>0
f(x)在区间[1,e]上的单调递增
所以[f(x)]min=f(1)=-2a;
当1<a<e时,f(x)在[1,a]单调递减,在[a,e]上单调递增
所以[f(x)]min=f(a)=-a2-a+alna;
当a≥e时,f(x)在[1,e]上单调递减
所以[f(x)]min=f(e)=e2-2ae-e+a.
(III)令x2-(a+2)x+alnx≥0在[
1
e
,e]
上有解.
即x2-2x≥a(x-lnx),由于x-lnx在[
1
e
,e]
上为正数
∴问题转化为a≤
x2-2x
x-lnx
[
1
e
,e]
上有解
令h(x)=
x2-2x
x-lnx
,下求此函数在[
1
e
,e]
的最大值
由于当x<2时,h(x)为负,下研究h(x)在(2,e)上的单调性,
由于h′(x)=
(x-1)(x+2-2lnx)
(x-lnx)2
>0成立,所以h(x)=
x2-2x
x-lnx
在(2,e)上是增函数,又h(e)=
e2-2e
e-1
>0
所以h(x)max=
e2-2e
e-1

故实数a的取值范围为a≤
e2-2e
e-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网