题目内容

12.在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;在四边形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成立;在五边形ABCDE中,$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.猜想在n边形中,成立的不等式为(  )
A.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{n}{π}$B.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+1)π}$
C.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n-2)π}$D.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+2)π}$

分析 观察已知条件,找出规律,猜想在n边形中,成立的不等式即可.

解答 解:在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;
在四边形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成立;
在五边形ABCDE中,$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.

左侧是内角的倒数的和,右侧是分子为边数的平方,分母是(n-2)π.
猜想在n边形中,成立的不等式为:$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n-2)π}$.
故选:C.

点评 本题主要考查归纳推理的方法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网