题目内容
2.已知$\overrightarrow{p}$与$\overrightarrow{q}$是两个夹角为60°的单位向量,且2$\overrightarrow{p}$-$\overrightarrow{q}$与k$\overrightarrow{p}$+$\overrightarrow{q}$的夹角为120°,求k.分析 由已知得到$\overrightarrow{p}$与$\overrightarrow{q}$的数量积为$\frac{1}{2}$,由2$\overrightarrow{p}$-$\overrightarrow{q}$与k$\overrightarrow{p}$+$\overrightarrow{q}$的夹角为120°,利用数量积公式得到关于k的等式解之.
解答 解:由已知得到$\overrightarrow{p}$•$\overrightarrow{q}$=1×1×cos60°=$\frac{1}{2}$,又|2$\overrightarrow{p}$-$\overrightarrow{q}$|=$\sqrt{4{\overrightarrow{p}}^{2}-4\overrightarrow{p}•\overrightarrow{q}+{\overrightarrow{q}}^{2}}$=$\sqrt{3}$,|k$\overrightarrow{p}$+$\overrightarrow{q}$|=${\sqrt{{k}^{2}{\overrightarrow{p}}^{2}+2k\overrightarrow{p}•\overrightarrow{q}+{\overrightarrow{q}}^{2}}}^{\;}$=$\sqrt{{k}^{2}+k+1}$,
所以(2$\overrightarrow{p}$-$\overrightarrow{q}$)(k$\overrightarrow{p}$+$\overrightarrow{q}$)=$\sqrt{3}\sqrt{{k}^{2}+k+1}×cos120°$=2k-1+1-$\frac{k}{2}$,
解得k=-2.
点评 本题考查了平面向量的数量积公式的运用;熟练运用公式是关键,属于基础题
A. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{n}{π}$ | B. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+1)π}$ | ||
C. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n-2)π}$ | D. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+2)π}$ |
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | $\frac{5}{3}$ |
A. | (-1,0) | B. | (0,-1) | C. | (1,1) | D. | (-1,-1) |
A. | S7 | B. | S4 | C. | S13 | D. | S16 |
A. | (x-1)2+(y-1)2=2 | B. | (x-1)2+(y-1)2=4 | C. | (x+1)2+(y+1)2=2 | D. | (x+1)2+(y+1)2=4 |