题目内容
【题目】对甲、乙的学习成绩进行抽样分析,各抽五门功课,得到的观测值如表:
甲 | 60 | 80 | 70 | 90 | 70 |
乙 | 80 | 60 | 70 | 80 | 75 |
问:甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?( )
A.甲的平均成绩较好,乙的各门功课发展较平衡
B.甲的平均成绩较好,甲的各门功课发展较平衡
C.乙的平均成绩较好,甲的各门功课发展较平衡
D.乙的平均成绩较好,乙的各门功课发展较平衡
【答案】A
【解析】解:甲的平均成绩 = (60+80+70+90+70)=74,
甲的方差 = [(60﹣74)2+(80﹣74)2+(70﹣74)2+(90﹣74)2+(70﹣74)2]=104.
乙的平均成绩 = (80+60+70+80+75)=73,
乙的方差 = [(80﹣73)2+(60﹣73)2+(70﹣73)2+(80﹣73)2+(75﹣73)2]=56.
∴甲的平均成绩较好,乙的各门功课发展较平衡.
故选:A.
【考点精析】解答此题的关键在于理解平均数、中位数、众数的相关知识,掌握⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.
【题目】某市教育局委托调查机构对本市中小学学校使用“微课掌上通”满意度情况进行调查.随机选择小学和中学各50所学校进行调查,调查情况如表:
评分等级 | ☆ | ☆☆ | ☆☆☆ | ☆☆☆☆ | ☆☆☆☆☆ |
小学 | 2 | 7 | 9 | 20 | 12 |
中学 | 3 | 9 | 18 | 12 | 8 |
(备注:“☆”表示评分等级的星级,例如“☆☆☆”表示3星级.)
(1)从评分等级为5星级的学校中随机选取两所学校,求恰有一所学校是中学的概率;
(2)规定:评分等级在4星级以上(含4星)为满意,其它星级为不满意.完成下列2×2列联表并帮助判断:能否在犯错误的概率不超过0.05的前提下认为使用是否满意与学校类别有关系?
学校类型 | 满意 | 不满意 | 总计 |
小学 | 50 | ||
中学 | 50 | ||
总计 | 100 |