题目内容

【题目】若函数 的定义域为A,函数g(x)=lg(x﹣1),x∈[2,11]的值域为B,则A∩B为(  )
A.(﹣∞,1)
B.(﹣∞,1]
C.[0,1]
D.(0,1]

【答案】C
【解析】解答:∵函数 ,∴1﹣x≥0,
x≤1,
∴A={x|x≤1},
∵g(x)=lg(x﹣1),x∈[2,11]
∵g(x)在x∈[2,11]上为增函数,
∴g(x)∈[0,1],
∴B={x|0≤x≤1},
∴A∩B为[0,1].
故选C.
分析:根据根式有意义的条件,求出函数的定义域A,再根据对数的定义域,求出其值域B,然后两集合取交集.
【考点精析】掌握函数的定义域及其求法和函数的值域是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网