题目内容
如图,已知F1、F2分别为椭圆C1:
的上、下焦点,其中F1也是抛物线C2:
的焦点,点A是曲线C1,C2在第二象限的交点,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721440634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137214723541.png)
(Ⅰ)求椭圆
1的方程;
(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:
的直径,求
的最大值和最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137213781082.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721394520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721440634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137214723541.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721628313.png)
(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721659735.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721674728.png)
(Ⅰ)
;
(Ⅱ)当
时,
,当
时,
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721706718.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721721473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721752707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721768487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721799691.png)
试题分析:(Ⅰ)抛物线C2的焦点F1(0,1),准线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721830370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721846617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721877907.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721924721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721955811.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721971517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722002887.png)
联立①②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722033632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721706718.png)
(Ⅱ)圆C:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722080739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722142385.png)
设P(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722158758.png)
法一:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137221891081.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137222201202.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722236604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137222671082.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137222981361.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721721473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721752707.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721768487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721799691.png)
法二:设M(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722376749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722408749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721674728.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137224542633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137224701715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137224861396.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721721473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721752707.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721768487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721799691.png)
法三:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722595840.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137226101022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137226421108.png)
∵C是MN中点,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137226571723.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013722688977.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137227041556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240137224861396.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721721473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721752707.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721768487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013721799691.png)
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)利用平面向量的坐标运算,将问题转化成三角函数问题,确定最值。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目