题目内容
如图,椭圆
的顶点为
,焦点为
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126418559424.png)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,
是与n垂直相交于P点,与椭圆相交于A, B两点的直线,
.是否存在上述直线
使
成立?若存在,求出直线
的方程;并说出;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641793864.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641808607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641824441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126418391194.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126418559424.png)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641902461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641933589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
(Ⅰ)
(Ⅱ)使
成立的直线
不存在.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641964726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641980640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
试题分析:(Ⅰ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642011612.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126420271032.png)
又b2=a2-c2 ③
由 ①,②,③解得a2=4,b2=3,
故椭圆C的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641964726.png)
(Ⅱ) 设A,B两点的坐标分别为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642058768.png)
假设使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641980640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126421059400.png)
(i) 当l不垂直于x轴时,设l的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642120598.png)
由l与n垂直相交于P点且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641902461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642151719.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642167611.png)
将y=kx+m代入椭圆方程,得(3+4k2)x2+8kmx+(4m2-12)=0,
由求根公式可得x1+x2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642183770.png)
x1+x2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642214822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126422291192.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642245981.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126422761088.png)
将④,⑤代入上式并化简得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126422921389.png)
将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642307545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642323645.png)
即此时直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
(ii)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642370266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642385453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642432462.png)
则A,B两点的坐标为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642448716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642495767.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642510323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126425731323.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012642588332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240126426041361.png)
∴ 此时直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
综上可知,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641980640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012641886280.png)
点评:椭圆的概念和性质,仍将是今后命题的热点,定值、最值、范围问题将有所加强;利用直线、弦长、圆锥曲线三者的关系组成的各类试题是解析几何中长盛不衰的主题,其中求解与相交弦有关的综合题仍是今后命题的重点;与其它知识的交汇(如向量、不等式)命题将是今后高考命题的一个新的重点、热点.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目