题目内容
【题目】设函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣ <φ< ,x∈R)的部分图象如图所示.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)将函数y=f(x)的图象沿x轴方向向右平移 个单位长度,再把横坐标缩短到原来的 (纵坐标不变),得到函数y=g(x)的图象,当x∈[﹣ , ]时,求函数g(x)的值域.
【答案】解:(Ⅰ)由图象知,A=2,
又 = ﹣ = ,ω>0,
所以T=2π= ,得ω=1.
所以f(x)=2sin(x+φ),
将点( ,2)代入,得 +φ=2kπ+ (k∈Z),
即φ= +2kπ(k∈Z),又﹣ <φ< ,
所以,φ= .
所以f(x)=2sin(x+ ).
故函数y=f(x)的解析式为:f(x)=2sin(x+ ).
(Ⅱ)将函数y=f(x)的图象沿x轴方向右平移 个单位长度,
得到的图象对应的解析式为:y=2sinx,
再把横坐标缩短到原来的 (纵坐标不变),得到的图象对应的解析式为:g(x)=2sin2x,
∵x∈[﹣ , ],
∴﹣ ≤2x≤ ,
∴2sin2x∈[﹣1,2],可得:g(x)∈[﹣1,2]
【解析】(Ⅰ)由图象知,A,周期T,利用周期公式可求ω,由点( ,2)在函数图象上,结合范围﹣ <φ< ,可求φ,从而解得函数解析式.(Ⅱ)由函数y=Asin(ωx+φ)的图象变换规律可求g(x),利用正弦函数的图象和性质即可得解.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
【题目】某校为了解高三年级不同性别的学生对取消艺术课的态度(支持或反对),进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为 ,通过对被抽取学生的问卷调查,得到如下2x2列联表:
支持 | 反对 | 总计 | |
男生 | 30 | ||
女生 | 25 | ||
总计 |
(Ⅰ)完成列联表,并判断能否有99.9%的把握认为态度与性别有关?
(Ⅱ)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式及临界表:K2=
P(K2≥k0) | 0.10 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706% | 3.841 | 6.635 | 7.879 | 10.828 |