题目内容
【题目】从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示频率分布直方图.
(Ⅰ)估计从该市高一学生中随机抽取一人,体重超过的概率;
(Ⅱ)假设该市高一学生的体重服从正态分布.
(ⅰ)利用(Ⅰ)的结论估计该高一某个学生体重介于 之间的概率;
(ⅱ)从该市高一学生中随机抽取3人,记体重介于之间的人数为,利用(ⅰ)的结论,求的分布列及.
【答案】(1)(2)(ⅰ)(ⅱ)见解析
【解析】试题分析:(1)根据频率分布直方图中小长方形面积等于对应区间概率得体重超过的频率为,(2)(ⅰ)(ⅱ)因为,所以.
试题解析:
(Ⅰ)这400名学生中,体重超过的频率为,
由此估计从该市高一学生中随机抽取一人,体重超过的概率为.
(Ⅱ)(ⅰ)∵, ,∴,
∴,∴.
(ⅱ)因为该市高一学生总体很大,所以从该市高一学生中随机抽取3人,可以视为独立重复实验,
其中体重介于之间的人数, , .
所以的分布列为
.
【题目】某公司生产的某种时令商品每件成本为元,经过市场调研发现,这种商品在未来天内的日销售量(件)与时间(天)的关系如下表所示.
时间/天 | 1 | 3 | 6 | 10 | 36 | …… |
日销售量 /件 | 94 | 90 | 84 | 76 | 24 | …… |
未来40天内,前20天每天的价格(元/件)与时间(天)的函数关系式为 ,且为整数),后20天每天的价格(元/件)与时间(天)的函数关系式为,且为整数).
(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据(件)与 (天)的关系式;
(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?
(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠元利润给希望工程. 公司通过销售记录发现,前 20 天中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.