题目内容
如图,四边形
为直角梯形,
,
,
,又
,
,
,直线
与直线
所成角为
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)求
与平面
所成角的正弦值.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056472641886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205646983537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205646999657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647014589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647045698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647061442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647077697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647092558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647123410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647139405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647155381.png)
(Ⅰ)求证:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647186503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647201475.png)
(Ⅱ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647217399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647248492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056472641886.png)
(Ⅰ)∵
,
,
,
∴
平面
,
又∵
平面
,
∴平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647389481.png)
平面
.---------4分
(Ⅱ)在平面
内,过
作
,以
为原点,以
所在射线为
的正半轴建立空间直角坐标系
(如图).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056476072090.png)
由题意,设
,
则
,
,
,
,---------6分
由直线
与直线
所成角为
,得
,即
,解得
.
∴
,
,
,
设平面
的一个法向量为
,则
,
即
,取
则
,得
,
设
与平面
所成角为
,则
,于是
与平面
所成角的正弦值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205648169456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647092558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647295500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647311617.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647326429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647201475.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647373442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647389481.png)
∴平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647389481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647420183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647201475.png)
(Ⅱ)在平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647482474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647498313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647513540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647498313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647560602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647576459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647591522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056476072090.png)
由题意,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647623720.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056476381016.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647654786.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647669935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647701691.png)
由直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647123410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647139405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647155381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056477631045.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647794732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647810337.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647841668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647857798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647872674.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647248492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647919613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647935894.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647950978.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647966455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647997514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205648013587.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647217399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647248492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205648075297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056480911002.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647217399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205647248492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205648169456.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目