题目内容
12.执行如图所示的程序框图,若输入的N是6,则输出P的值是( )A. | 120 | B. | 720 | C. | 1440 | D. | 5040 |
分析 根据程序框图进行模拟计算即可.
解答 解:P=1×1=1,1<N成立,循环K=2,
P=1×2=2,2<N成立,循环K=3,
P=2×3=6,3<N成立,循环K=4,
P=6×4=24,4<N成立,循环K=5,
P=24×5=120,5<N成立,循环K=6,
P=120×6=720,6<N不成立,
输出P=720,
故选:B
点评 本题主要考查程序框图的应用,根据条件进行模拟计算是解决本题的关键.
练习册系列答案
相关题目
2.化简(x+1)4-4(x+1)3+6(x+1)2-4(x+1)+1的结果为( )
A. | x4 | B. | (x-1)4 | C. | (x+1)4 | D. | x4-1 |
3.设a=0.82.1,b=21.1,c=log23,则( )
A. | b<c<a | B. | c<a<b | C. | a<b<c | D. | a<c<b |
20.某几何体的三视图如图所示,则该几何体的体积为( )
A. | 1 | B. | 2 | C. | 2$\sqrt{2}$ | D. | $\frac{2}{3}$ |
7.一次考试中,五名学生的数学、物理成绩如下表所示:
(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.
学生 | A1 | A2 | A3 | A4 | A5 |
数学 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(2)根据上表数据,用变量y与x的相关系数和散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱,如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回归直线的方程:$\widehat{y}$=$\widehat{b}x+\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehat{b}x$,$\widehat{{y}_{i}}$是与xi对应的回归估计值.
参考数据:$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.