题目内容
【题目】学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得1分、2分、3分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束。设选手甲第一关、第二关、第三关的概率分别为,,,选手选择继续闯关的概率均为,且各关之间闯关成功互不影响
(I)求选手甲第一关闯关成功且所得分数为零的概率
(II)设该学生所得总分数为X,求X的分布列与数学期望
【答案】(Ⅰ);(Ⅱ)见解析.
【解析】分析:(Ⅰ)设甲“第一关闯关成功且所得分数为零”为事件A,“第一关闯关成功第二关闯关失败”为事件A1,“前两关闯关成功第三关闯关失败”为事件A2,由A1,A2互斥,能求出选手甲第一关闯关成功且所得学豆为零的概率.
(Ⅱ)X所有可能的取值为0,1,3,6,分别求出相应的概率,由此能求出X的分布列和数学期望.
详解:(Ⅰ)设甲“第一关闯关成功且所得分数为零”为事件,“第一关闯关成功第二关闯关失败”为事件,“前两关闯关成功第三关闯关失败”为事件,则,互斥,
, ,
(Ⅱ)所有可能的取值为0,1,3,6
,
,
,
所以,的分布列为:
.
练习册系列答案
相关题目