题目内容
【题目】如图在棱长均为2的正四棱锥P﹣ABCD中,点E为PC中点,则下列命题正确的是( )
A.BE平行面PAD,且直线BE到面PAD距离为
B.BE平行面PAD,且直线BE到面PAD距离为
C.BE不平行面PAD,且BE与平面PAD所成角大于
D.BE不平行面PAD,且BE与面PAD所成角小于
【答案】D
【解析】解:连接AC,BD,交点为O,以O为坐标原点, OC,OD,OP方向分别x,y,z轴正方向建立空间坐标系,
由正四棱锥P﹣ABCD的棱长均为2,点E为PC的中点,
则O(0,0,0),A(﹣ ,0,0),B(0,﹣ ,0),
C( ,0,0),D(0, ,0),
P(0,0, ),E( ,0, ),
则 =( , , ), =(﹣ ,0,﹣ ),
=(0, ,﹣ ),
设 =(x,y,z)是平面PAD的一个法向量,
则 ,
取x=1,得 =(1,﹣1,﹣1),
设BE与平面PAD所成的角为θ,
则sinθ=|cos< , >|=| |= < ,
故BE与平面PAD不平行,且BE与平面PAD所成的角小于30°.
由此排除选项A,B,C.
故选:D.
连接AC,BD,交点为O,以O为坐标原点,OC,OD,OP方向分别x,y,z轴正方向建立空间坐标系,分别求出直线BE的方向向量与平面PAD的法向量,代入向量夹角公式,求出BE与平面PAD夹角的正弦值,再由正弦函数的单调性,即可得到答案.
【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)
表中,.
(1)根据散点图判断,与哪一个更适宜作价格关于时间的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若该产品的日销售量(件)与时间的函数关系为(),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)
附:对于一组数据,,,,,其回归直线的斜率和截距的最小二乘估计分别为,.