题目内容
【题目】袋中装有一些大小相同的小球,其中号数为1的小球1个,号数为2的小球2个,号数为3的小球3个,…,号数为n的小球有n个,从袋中取一球,其号数记为随机变量,则的数学期望E=______________.
【答案】
【解析】分析:由题意知从袋中任取一球,其号数作为随机变量ξ则变量的可能取值是1、2、3…n,当ξ=1时,表示从袋中取球,取到一号球,试验发生包含的所有事件共有(1+2+3+…+n),而满足条件的事件数是1,求比值得到概率,以此类推,写出分布列和期望.
详解:由题意知从袋中任取一球,其号数作为随机变量ξ则变量的可能取值是1、2、3…n,
当ξ=1时,表示从袋中取球,取到一号球,试验发生包含的所有事件共有(1+2+3+…+n)=,
而满足条件的事件数是1,
∴P(ξ=1)==,
以此类推,得到其他变量的概率,
∴ξ的概率分布为
∴Eξ=1×+2×+3×++n×
=(12+22+32++n2)
=.
练习册系列答案
相关题目
【题目】关于函数,有下列结论:
①的定义域为(-1, 1); ②的值域为(, );
③的图象关于原点成中心对称; ④在其定义域上是减函数;
⑤对的定义城中任意都有.
其中正确的结论序号为__________.
【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)
表中,.
(1)根据散点图判断,与哪一个更适宜作价格关于时间的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若该产品的日销售量(件)与时间的函数关系为(),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)
附:对于一组数据,,,,,其回归直线的斜率和截距的最小二乘估计分别为,.