题目内容

5.已知函数f(x)=$\left\{\begin{array}{l}{2-|x-2|,(0≤x<4)}\\{{2}^{x-2}-3,(4≤x≤6)}\end{array}\right.$,若存在x1,x2,当0≤x1<4≤x2≤6时,f(x1)=f(x2),则x1•f(x2)的取值范围是(  )
A.[0,1)B.[1,4]C.[1,6]D.[0,1]∪[3,8]

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{2-|x-2|,(0≤x<4)}\\{{2}^{x-2}-3,(4≤x≤6)}\end{array}\right.$,可得当0≤x1<4≤x2≤6时,若f(x1)=f(x2),则x1∈[1,3],进而得到x1•f(x2)的表达式,数形结合,可得x1•f(x2)的取值范围.

解答 解:函数f(x)=$\left\{\begin{array}{l}2-|x-2|,(0≤x≤4)\\{2}^{x-2}-3,(4≤x≤6)\end{array}\right.$的图象如下图所示:


当0≤x1<4≤x2≤6时,若f(x1)=f(x2),
则x1∈[1,3],
∴x1•f(x2)=x1•f(x1)=x1•(2-|x1-2|)=$\left\{\begin{array}{l}{x}_{1}^{2},1≤{x}_{1}<2\\{-x}_{1}^{2}+4{x}_{1},2≤{x}_{1}<3\end{array}\right.$,
其图象如下图所示:

即x1•f(x2)的范围是[1,4].
故选:B

点评 本题考查的知识点是分段函数的图象和性质,分段函数的应用,数形结合思想,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网