题目内容
(本小题满分14分)如图,正三棱柱中,为的中点,为边上的动点.(Ⅰ)当点为的中点时,证明DP//平面;(Ⅱ)若,求三棱锥的体积.
解析
(本小题满分12分)一个多面体的直观图和三视图如图所示,其中、分别是、的中点.(1)求证:平面(2)在线段上(含、端点)确定一点,使得平面,并给出证明;(3)一只小飞虫在几何体内自由飞,求它飞入几何体内的概率.
如图,直三棱柱中,,是棱的中点,(1) 证明:(2)求二面角的大小. (12分)
如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且;(Ⅰ)证明:无论取何值,总有;(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
(本题6分)已知圆台的母线长为4 cm,母线与轴的夹角为30°,上底面半径是下底面半径的,求这个圆台的侧面积.
(本小题满分14分)如图所示,在四棱锥中,平面,,,,是的中点.(1)证明:平面;(2)若,,,求二面角的正切值.
四棱锥中,侧面⊥底面,底面是边长为的正方形,又,,分别是的中点.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.
(本小题12分)已知四棱台的三视图如图所示,(1)求证:平面;(2)求证:平面平面;(3)求此四棱台的体积.
(本小题满分12分)一个多面体的直观图和三视图如图所示(1)求证:;(2)是否在线段上存在一点,使二面角的平面角为,设,若存在,求;若不存在,说明理由