题目内容
(本
题满分 13分)设函数
(
).
(1)当
时,求
的极值;
(2)当
时,求
的单调区间.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314241789972.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142417915844.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142417930261.gif)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142417993241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418024248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
(1)
取得极大值为
.
(2)当
时,
的增区间为
,减区间为
;
当
时,
的增区间为
,减区间为
,
;
当
时,
的减区间为
,无增区间;
当
时,
的增区间为
,减区间为
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418071296.gif)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418071246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418102332.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418149319.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418164304.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418196458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418211440.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418242344.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418242241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418274412.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418320253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418367458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418367452.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418383335.gif)
(1)依题意,知
的定义域为
.
当
时,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418492570.gif)
.
令
,解得
.
当
变化时,
与
的变化情况如下表:
由上表知:当
时,
;当
时,
.
故当
时,
取得极大值为
.
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418835673.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418851649.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418866624.gif)
若
,令
,解得:
;令
,解得:
.
若
,①当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419007316.gif)
令
,解得:
;令
,
解得:
或
.
②当
时,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419147721.gif)
③当
时,
令
,解得:
;令
,
解得:
或
.
综上,当
时,
的增区间为
,减区间为
;
当
时,
的增区间为
,减区间为
,
;
当
时,
的减区间为
,无增区间;
当
时,
的增区间为
,减区间为
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418274412.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142417993241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418461662.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418492570.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418508498.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418539340.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418554288.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418570187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418586289.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | 单调递增 | 极大值 | 单调递减 |
由上表知:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418742298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418757352.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418773301.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418788354.gif)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418554288.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418071296.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418835673.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418851649.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418866624.gif)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418071246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418757352.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418742298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418788354.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418960367.gif)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418976247.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418164304.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419007316.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418757352.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419038473.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418788354.gif)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419069286.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418960367.gif)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418242241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419116307.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419147721.gif)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418320253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419163316.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418757352.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419210375.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418788354.gif)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418742298.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142419241353.gif)
综上,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418071246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418102332.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418149319.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418164304.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418196458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418211440.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418242344.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418242241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418274412.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418320253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418008270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418367458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418367452.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142418383335.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目