题目内容
【题目】已知等差数列{an}中,前m(m为奇数)项的和为77,其中偶数项之和为33,且a1﹣am=18,则数列{an}的通项公式为an= .
【答案】﹣3n+23
【解析】解:∵等差数列{an}中,前m(m为奇数)项的和为77, ∴ma1+ =77,①
∵其中偶数项之和为33,
∴设公差等于d,由题意可得偶数项共有 项.
(a1+d)+ ×2d=33,②
∵a1﹣am=18,
∴a1﹣am=18=﹣(m﹣1)d,③
由①②③,解得 m=7,d=﹣3,a1=20,
故an=a1+(n﹣1)d=20+(n﹣1)×(﹣3)=﹣3n+23.
数列{an}的通项公式为an=﹣3n+23.
所以答案是:﹣3n+23.
【考点精析】掌握等差数列的通项公式(及其变式)是解答本题的根本,需要知道通项公式:或.
【题目】某算法的程序图如图所示,其中输入的变量x在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据: 甲的频数统计表(部分)
运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
50 | 24 | 19 | 7 |
… | … | … | … |
2000 | 1027 | 776 | 197 |
乙的频数统计表(部分)
运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
50 | 26 | 11 | 13 |
… | … | … | … |
2000 | 1051 | 396 | 553 |
当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合计 | 1 |
(1)求出表中及图中的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.