题目内容
【题目】已知正项数列{an}的前n项和Sn满足2Sn=an2+an-2.
(1)求数列{an}的通项公式;
(2)若bn=(n∈N*),求数列{bn}的前n项和Tn.
(3)是否存在实数λ使得Tn+2>λSn对n∈N+恒成立,若存在,求实数λ的取值范围,若不存在说明理由.
【答案】(1);(2);(3)存在,
【解析】
(1)直接利用递推关系式的应用求出数列的通项公式.
(2)利用(1)的结论,进一步求出数列的通项公式.
(3)利用恒成立问题的应用和函数的单调性的应用求出参数的取值范围.
(1)当n=1时,a1=2或-1(舍去).
当n≥2时,,
整理可得:(an+an-1)(an-an-1-1)=0,
可得an-an-1=1,
∴{an}是以a1=2为首项,d=1为公差的等差数列.
∴.
(2)由(1)得an=n+1,
∴.
∴.
(3)假设存在实数λ,使得对一切正整数恒成立,
即对一切正整数恒成立,只需满足即可,
令,
则
当
故 f(1)=1,f(2)=,f(3)=,>f(5)>f(6)>…
当n=3时有最小值.
所以.
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得: , , , ,
,线性回归模型的残差平方和,e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为
=;相关指数R2=.