题目内容

【题目】如图所示,在直三棱柱中,,其中为棱上的中点,为棱上且位于点上方的动点.

(1)证明:平面

(2)若平面与平面所成的锐二面角的余弦值为,求直线与平面所成角的正弦值.

【答案】(1)见证明;(2)

【解析】

1)推导出tan∠BB1C==,tan∠PBC==,从而∠BB1C=∠PBC,PB⊥B1C,推导出BB1⊥A1B1,A1B1⊥B1C1,从而A1B1⊥平面BCC1B1,A1B1⊥BP,由此能证明BP⊥平面A1B1C.
(2)以BC,BA,BB1为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线BQ与平面A1B1C所成角的正弦值.

(1)证明:在侧面中,因为为棱上的中点,

所以

所以,所以

在直三棱柱中,平面

所以

因为,所以

所以

因为,所以平面

所以,因为,所以平面

(2)解:如图,以轴建立空间直角坐标系,

为平面的一个法向量.

,则

设平面的法向量为,则

所以

因为平面与平面所成的锐二面角的余弦值为

所以,所以,解得,

由已知得,,所以,所以

所以直线与平面所成角的正弦值为.

涓€棰樹竴棰樻壘绛旀瑙f瀽澶參浜�
涓嬭浇浣滀笟绮剧伒鐩存帴鏌ョ湅鏁翠功绛旀瑙f瀽
绔嬪嵆涓嬭浇
练习册系列答案
相关题目

【题目】有7位歌手1至7号参加一场歌唱比赛, 550名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:

组别

A

B

C

D

E

人数

50

100

200

150

50

为了调查大众评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.

中, 若A, C两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率.

组别

A

B

C

D

E

人数

50

100

200

150

50

抽取人数

6

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网