题目内容
【题目】如图所示,在直三棱柱中,,,其中为棱上的中点,为棱上且位于点上方的动点.
(1)证明:平面;
(2)若平面与平面所成的锐二面角的余弦值为,求直线与平面所成角的正弦值.
【答案】(1)见证明;(2)
【解析】
(1)推导出tan∠BB1C==,tan∠PBC==,从而∠BB1C=∠PBC,PB⊥B1C,推导出BB1⊥A1B1,A1B1⊥B1C1,从而A1B1⊥平面BCC1B1,A1B1⊥BP,由此能证明BP⊥平面A1B1C.
(2)以BC,BA,BB1为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线BQ与平面A1B1C所成角的正弦值.
(1)证明:在侧面中,因为,,为棱上的中点,
所以,,
所以,所以,
在直三棱柱中,平面,
所以,
因为,,所以,
所以,
因为,所以平面,
所以,因为,所以平面;
(2)解:如图,以,,为轴建立空间直角坐标系,
则,为平面的一个法向量.
设,则,,
设平面的法向量为,则,,
所以,
因为平面与平面所成的锐二面角的余弦值为,
所以,所以,解得,或,
由已知得,,所以,所以,
所以直线与平面所成角的正弦值为.
【题目】有7位歌手(1至7号)参加一场歌唱比赛, 由550名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 200 | 150 | 50 |
(Ⅰ) 为了调查大众评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.
(Ⅱ) 在(Ⅰ)中, 若A, C两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率.
组别 | A | B | C | D | E |
人数 | 50 | 100 | 200 | 150 | 50 |
抽取人数 | 6 |
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;