题目内容
【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.
(1)若当时,,求此时的值;
(2)设,且.
(i)试将表示为的函数,并求出的取值范围;
(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.
【答案】(1);(2)(i),;(ii).
【解析】
(1)在中,由正弦定理可得所求;
(2)(i)由余弦定理得,两式相加可得所求解析式.(ii)在中,由余弦定理可得,根据的最大值不小于可得关于的不等式,解不等式可得所求.
(1)在中,由正弦定理得,
所以,
即.
(2)(i)在中,由余弦定理得,
在中,由余弦定理得,
又
所以,
即.
又,解得,
所以所求关系式为,.
(ii)当观赏角度的最大时,取得最小值.
在中,由余弦定理可得
,
因为的最大值不小于,
所以,解得,
经验证知,
所以.
即两处喷泉间距离的最小值为.
练习册系列答案
相关题目