题目内容

(2012•广东)设数列{an}的前n项和为Sn,满足,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
(1)1    (2)an=3n﹣2n   (3)见解析
(1)在2Sn=an+1﹣2n+1+1中,
令n=1得:2S1=a2﹣22+1,
令n=2得:2S2=a3﹣23+1,
解得:a2=2a1+3,a3=6a1+13
又2(a2+5)=a1+a3
解得a1=1
(2)由2Sn=an+1﹣2n+1+1,
得an+2=3an+1+2n+1
又a1=1,a2=5也满足a2=3a1+21
所以an+1=3an+2n对n∈N*成立
∴an+1+2n+1=3(an+2n),又a1=1,a1+21=3,
∴an+2n=3n
∴an=3n﹣2n
(3)(法一)
∵an=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1

+++…+≤1+++…+=
(法二)∵an+1=3n+1﹣2n+1>2×3n﹣2n+1=2an
,,
当n≥2时,

累乘得:
+++…+≤1++×+…+×
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网