题目内容

【题目】如图:在三棱锥中,已知底面是以为斜边的等腰直角三角形,且侧棱长,则三棱锥的外接球的表面积等于__________

【答案】

【解析】三棱锥的外接球的球心在SM上(M为AB 中点),球半径设为R,则

点睛涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.

型】填空
束】
16

【题目】已知斜率的直线过抛物线的焦点,且与抛物线相交于两点,分别过点若作抛物线的两条切线相交于点,则的面积为__________

【答案】

【解析】

因此过A切线为 同样过B切线为

解得 所以由

所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网