题目内容
【题目】若函数f(x)= ,则函数y=|f(x)|﹣ 的零点个数为 .
【答案】4
【解析】解:当x≥1时, = ,即lnx= , 令g(x)=lnx﹣ ,x≥1时函数是连续函数,
g(1)=﹣ <0,g(2)=ln2﹣ =ln >0,
g(4)=ln4﹣2<0,由函数的零点判定定理可知g(x)=lnx﹣ ,有2个零点.
(结合函数y= 与y= 可知函数的图象由2个交点.)
当x<1时,y= ,函数的图象与y= 的图象如图,考查两个函数由2个交点,
综上函数y=|f(x)|﹣ 的零点个数为:4个.
故答案为:4.
利用分段函数,对x≥1,通过函数的零点与方程根的关系求解零点个数,当x<1时,利用数形结合求解函数的零点个数即可.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
昼夜温差 | ||||||
就诊人数(个) | 16 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是月与月的两组数据,请根据至月份的数据,求出 关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如表所示:
商店名称 | A | B | C | D | E |
销售额(x)/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额(y)/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)画出销售额和利润额的散点图.
(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程=x+,其中=,=-.
(3)若获得利润是4.5百万元时估计销售额是多少(千万元)?