题目内容
【题目】已知x0,x0+是函数f(x)=cos2(wx﹣)﹣sin2wx(ω>0)的两个相邻的零点
(1)求的值;
(2)若对任意,都有f(x)﹣m≤0,求实数m的取值范围.
(3)若关于的方程在上有两个不同的解,求实数的取值范围.
【答案】(1) (2)(3)
【解析】试题分析:(1)利用三角恒等变形,对原函数进行化简变形,可得,由两相邻零点可得函数最小正周期,再利用最小正周期与的关系可得函数表达式,将代入可得其值;(2)实数的取值范围可转化为求函数在的最大值问题,利用三角函数的性质可得结果;(3)类比第二小题,利用分离变量求出的取值范围,结合图象可知与有两交点时的范围.
试题解析:(1)f(x)==
==
=()=.
由题意可知,f(x)的最小正周期T=π,
∴, 又∵ω>0, ∴ω=1,
∴f(x)=.
∴=.
(2)由f(x)﹣m≤0得,f(x)≤m, ∴m≥f(x)max,
∵﹣, ∴, ∴,
∴﹣≤, 即f(x)max=,
∴ 所以
(3)原方程可化为
即
画出 的草图
x=0时,y=2sin=,
y的最大值为2,
∴要使方程在x∈[0, ]上有两个不同的解,
即≤m+1<2, 即﹣1≤m<1. 所以
练习册系列答案
相关题目