题目内容
【题目】已知等差数列{}满足: =2,且成等比数列.
(1)求数列{}的通项公式.
(2)记为数列{}的前n项和,是否存在正整数n,使得?若存在,求n的最小值;若不存在,说明理由.
【答案】(1)an=2或an=4n-2(2)当an=2时,不存在满足题意的正整数n;当an=4n-2时,存在满足题意的正整数n,其最小值为41.
【解析】试题分析:(1)设出等差数列的公差d,由成等比数列列式求得d,则数列{an}的通顶公式可求;
(2)把代入,求出n的范围,由n是负值,说明不存在正整数n,使得
试题解析:(1)设数列{an}的公差为d,依题意得,2,2+d,2+4d成等比数列,
故有(2+d)2=2(2+4d),
化简得d2-4d=0,解得d=0或d=4.
当d=0时,an=2;
当d=4时,an=2+(n-1)·4=4n-2.
从而得数列{an}的通项公式为an=2或an=4n-2
(2)当an=2时,Sn=2n,显然2n<60n+800,
此时不存在正整数n,使得Sn>60n+800成立.
当an=4n-2时,Sn==2n2.
令2n2>60n+800,即n2-30n-400>0,
解得n>40或n<-10(舍去),
此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.
综上,当an=2时,不存在满足题意的正整数n;
当an=4n-2时,存在满足题意的正整数n,其最小值为41.
练习册系列答案
相关题目