题目内容
【题目】有下列五个命题: ①平面内,到一定点的距离等于到一定直线距离的点的集合是抛物线;
②平面内,定点F1、F2 , |F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
④“若﹣3<m<5,则方程 =1是椭圆”.
⑤已知向量 , , 是空间的一个基底,则向量 + , ﹣ , 也是空间的一个基底.
其中真命题的序号是 .
【答案】③⑤
【解析】解:①平面内,到一定点的距离等于到一定直线(定点不在定直线上)距离的点的集合是抛物线, 若定点在定直线上,则动点的集合是过定点垂直于定直线的一条直线,故①错;
②平面内,定点F1、F2 , |F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是线段F1F2 ,
若|MF1|+|MF2|>|F1F2|,则点的轨迹是椭圆,故②错;
③在△ABC中,∠A,∠B,∠C三个角成等差数列,则2∠B=∠A+∠C=180°﹣∠B,
∠B=60°,若∠B=60°,则2∠B=∠A+∠C=120°,即∠B﹣∠A=∠C﹣∠A,
即∠A,∠B,∠C三个角成等差数列,故③正确;
④若﹣3<m<5,则方程 =1,m+3>0,5﹣m>0,若m=1,则x2+y2=4表示圆,
若m≠1,则表示椭圆,故④错;
⑤已知向量 , , 是空间的一个基底,即它们非零向量且不共线,
则向量 + , ﹣ , 也是空间的一个基底,故⑤正确.
所以答案是:③⑤
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 | |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)