题目内容

4.在△ABC中,若$\frac{{a}^{2}}{{b}^{2}}$=$\frac{sinAcosB}{cosAsinB}$,判断△ABC的形状.

分析 由正弦定理结合三角形内角的范围可求得sin2A=sin2B,根据和差化积公式整理求得cos(A+B)=0或sin(A-B)=0,推断出A+B=$\frac{π}{2}$或A=B,则三角形形状可判断出.

解答 解:∵由正弦定理可得:a=2RsinA,b=2RsinB,
∴$\frac{{a}^{2}}{{b}^{2}}$=$\frac{4{R}^{2}si{n}^{2}A}{4{R}^{2}si{n}^{2}B}$=$\frac{si{n}^{2}A}{si{n}^{2}B}$=$\frac{sinAcosB}{cosAsinB}$,
∵0<A<π,0<B<π,即sinA>0,sinB>0,
∴可得:$\frac{sinA}{sinB}=\frac{cosB}{cosA}$,解得sin2A=sin2B,
∴sin2A-sin2B=cos(A+B)sin(A-B)=0,
∴cos(A+B)=0或sin(A-B)=0,
∴A+B=$\frac{π}{2}$或A=B,
∴三角形为直角三角形或等腰三角形.

点评 本题主要考查了三角形的形状判断.需要挖掘题设信息,借助三角函数的基本公式和基本性质找到边与边或角与角之间的关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网