题目内容
【题目】设命题p:x0∈(0,+∞),3 +x0=2016,命题q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)为偶函数,那么,下列命题为真命题的是( )
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)
【答案】C
【解析】解:命题p:令f(x)=3x+x﹣2016,则f(6)=﹣1284<0,f(7)=174>0,因此x0∈(0,+∞),3 +x0=2016,是真命题.
命题q:取a=1,则f(x)=|x|﹣x= ,因此函数f(x)是非奇非偶函数.因此命题q是假命题.
下列命题为真命题的是p∧(¬q).
故选:C.
对于命题p,利用函数零点判定定理即可判断出真假.命题q:取a=1,则f(x)=|x|﹣x= ,即可判断出真假.
练习册系列答案
相关题目
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 ;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.