题目内容
9.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与抛物线y2=4x的焦点重合,则a+b的最大值为( )A. | $\sqrt{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | 2$\sqrt{2}$ |
分析 求出抛物线的焦点,可得双曲线的c=1,a2+b2=1,令a=cosα,b=sinα(0<α<$\frac{π}{2}$),运用两角和的正弦公式,结合正弦函数的值域即可得到最大值.
解答 解:抛物线C1:y2=4x的焦点为(1,0),即有双曲线的右焦点为(1,0),
即c=1,a2+b2=1,
令a=cosα,b=sinα(0<α<$\frac{π}{2}$),
则a+b=cosα+sinα=$\sqrt{2}$sin(α+$\frac{π}{4}$)
当α+$\frac{π}{4}$=$\frac{π}{2}$时,sin(α+$\frac{π}{4}$)取得最大值1,
即有a+b取得最大值$\sqrt{2}$.
故选:A.
点评 本题考查抛物线和双曲线的方程和性质,同时考查三角换元和正弦函数的图象和性质,运用两角和的正弦公式是解题的关键.
练习册系列答案
相关题目
20.有2000名网购者在11月11日当天于某购物网站进行网购消费(每人消费金额不超过 1000元),其中有女士1100名,男士900名,该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分折,如下表(消费金額卑位:元)
女士消费情况:
男士消费情况况:
(1)计算算x,y的值;在抽出的200名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者都是男士的概率;
(2)若消费金额不低于600元的网购者为“网购达人,低于600元的网购者为“非网购达人”根据以上统计数据填写答题卡中的2×2列联表,并冋答能否在犯错误的概率不超过0.05的前提下认为“是否为网购达人与性别有关?”
附表:
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)
女士消费情况:
消费金额 | (0.200) | [200,400) | [400.600) | [600,800) | [800,1000] |
人数 | 10 | 25 | 35 | 30 | X |
消费金额 | (0.200) | [200,400) | [400.600) | [600,800) | [800.1000] |
人数 | 15 | 30 | 25 | Y | 5 |
(2)若消费金额不低于600元的网购者为“网购达人,低于600元的网购者为“非网购达人”根据以上统计数据填写答题卡中的2×2列联表,并冋答能否在犯错误的概率不超过0.05的前提下认为“是否为网购达人与性别有关?”
附表:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
14.已知函数f(x)=ex的图象与函数g(x)=|ln(-x)|的图象有两个交点A(x1,y1),B(x2,y2),则( )
A. | $\frac{1}{10}$<x1x2<$\frac{1}{e}$ | B. | $\frac{1}{e}$<x1x2<1 | C. | 1<x1x2<e | D. | x1x2>e |