题目内容
【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
【答案】B
【解析】解:△ABC的内角A,B,C所对的边分别为a,b,c, ∵bcosC+ccosB=asinA,则由正弦定理可得 sinBcosC+sinCcosB=sinAsinA,
即 sin(B+C)=sinAsinA,可得sinA=1,故A= ,故三角形为直角三角形,
故选B.
由条件利用正弦定理可得 sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A= ,由此可得△ABC的形状.
练习册系列答案
相关题目
【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位: ),得到如图频率分布表:
分组(身高) | ||||
(Ⅰ)用分层抽样的方法从身高在和的女生中共抽取6人,则身高在的女生应抽取几人?
(Ⅱ)在(Ⅰ)中抽取的6人中,再随机抽取2人,求这2人身高都在内的概率.