题目内容
【题目】如图,已知在多面体ABCDEF中,ABCD为正方形,EF∥平面ABCD,M为FC的中点,AB=2,EF到平面ABCD的距离为2,FC=2.
(1)证明:AF∥平面MBD;
(2)若EF=1,求VF﹣MBE.
【答案】(1)见解析;(2) .
【解析】试题分析:(1)根据线面平行的判定定理,即可证明AF∥平面MBD;
(2)若EF=1,证明EF⊥平面FBC即EF是三棱锥的高,结合三棱锥的体积公式即可求VF﹣MBE.
试题解析:
(1)证明:连接AC,设AC与BD交于O点,在正方形ABCD中,O为AC的中点.
∵M是FC的中点,
∴OM∥AF,
∵AF平面MBD,OM平面MBD,
∴AF∥平面MBD.
(2)∵EF∥平面ABCD,FC=2,EF到平面ABCD的距离为2,
∴FC⊥平面ABCD,平面FBC⊥平面ABCD,
∵四边形ABCD为正方形,则AB⊥平面FBC,
∵EF∥平面ABCD,
∴EF∥AB,∴EF⊥平面FBC.
.
练习册系列答案
相关题目
【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.