题目内容
【题目】已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.
【答案】
【解析】
作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.
作A关于平面α和β的对称点M,N,交α和β与D,E,
连接MN,AM,AN,DE,
根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,
当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,
显然OD⊥l,OE⊥l,
∠DOE=60°,∠MOA+∠AON=240°,OA=1,
∠MON=120°,且OM=ON=OA=1,根据余弦定理,
故MN2=1+1﹣2×1×1×cos120°=3,
故MN.
故答案为:.
练习册系列答案
相关题目