题目内容
【题目】已知椭圆的左、右焦点为别为、,且过点和.
(1)求椭圆的标准方程;
(2)如图,点为椭圆上一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,求面积的最大值.
【答案】(1);(2)
【解析】
(1)将点和代入椭圆方程解得,即可得椭圆方程;
(2)当的斜率不存在时,易得;当的斜率存在时,设的方程为,联立,得:,设,利用韦达定理得,则,点到直线的距离是点到直线的距离的2倍,则,得;进行比较,得出面积的最大值.
(1)根据题意得,将点和代入椭圆方程得:,
解得:,所以椭圆的方程为.
(2)由(1)得椭圆的,,
①当的斜率不存在时,易知,
;
②当的斜率存在时,设直线的方程为,
联立方程组,消去得:
设,,
,
点到直线的距离,因为是线段的中点,所以点到直线的距离为,
所以
综上,面积的最大值为.
【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从到)若掷出偶数遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程中,.
【题目】为了调查公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.
20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(1)是否有的把握认为饮食习惯与月收入有关系?若有,请说明理由,若没有,说明理由并分析原因;
(2)从饮食指数在内的员工中任选2人,求他们的饮食指数均在内的概率;
(3)经调查某地若干户家庭的年收入(万元)和年饮支出(万元)具有线性相关关系,并得到关于的回归直线方程:.若一个员工的月收入恰好为这30人的月平均收入,估计该人的年饮食支出费用.
附:,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |