题目内容
已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn等于( )
A.2n-1 | B.![]() | C.![]() | D.![]() |
B
法一 由Sn=2an+1=2(Sn+1-Sn)可知,
3Sn=2Sn+1,即Sn+1=
Sn,
∴数列{Sn}是首项为S1=1,公比为
的等比数列,
∴Sn=
n-1.故选B.
法二 由Sn=2an+1 ①可知a2=
S1=
,
当n≥2时,Sn-1=2an, ②
∴①-②并化简得an+1=
an(n≥2),
即{an}从第二项起是首项为
,公比为
的等比数列,
∴Sn=a1+
=1+
n-1-1=
n-1(n≥2),当n=1时,满足上式.
故选B.
法三 特殊值法,由Sn=2an+1及a1=1,
可得a2=
S1=
,
∴当n=2时,S2=a1+a2=1+
=
,观察四个选项得B正确.故选B.
3Sn=2Sn+1,即Sn+1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043912389.png)
∴数列{Sn}是首项为S1=1,公比为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043912389.png)
∴Sn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043850586.png)
法二 由Sn=2an+1 ①可知a2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043943339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043943339.png)
当n≥2时,Sn-1=2an, ②
∴①-②并化简得an+1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043912389.png)
即{an}从第二项起是首项为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043943339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043912389.png)
∴Sn=a1+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240410440371205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043850586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043850586.png)
故选B.
法三 特殊值法,由Sn=2an+1及a1=1,
可得a2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043943339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043943339.png)
∴当n=2时,S2=a1+a2=1+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043943339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041043912389.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目