题目内容

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上的任意一点,当位于第一象限内时, 外接圆的圆心到抛物线准线的距离为.

(1)求抛物线的方程;

(2)过的直线交抛物线两点,且,点轴上一点,且,求点的横坐标的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)由抛物线的定义与圆的性质,可求出圆心到准线的距离用表示,可得值; (2)设,再由向量间关系可得坐标间关系,令直线与抛物线方程联立,利用韦达定理,可得中点坐标,求出直线的垂直平分线方程,可求得点横坐标,进一步求出其取值范围.

试题解析:根据题意,点的垂直平分线上,

所以点到准线的距离为

所以.

(2)设

设直线代入到中得

所以

中点

所以直线的垂直平分线的方程为

可得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网