题目内容

已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<αx<π.
(1)若α,求函数f(x)=b·c的最小值及相应x的值;
(2)若ab的夹角为,且ac,求tan 2α的值.
(1)最小值为-,相应x的值为(2)-
(1)∵b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),α
f(x)=b·c=cos xsin x+2cos xsin α+sin xcos x+2sin xcos α=2sin xcos x (sin x+cos x).
t=sin x+cos x,则2sin xcos xt2-1,且-1<t.
yt2t-1=2,-1<t
t=-时,ymin=-,此时sin x+cos x=-,即sin=-
x<π,∴xπ,∴x,∴x.
∴函数f(x)的最小值为-,相应x的值为.
(2)∵ab的夹角为,∴cos =cos αcos x+sin αsin x=cos(xα).
∵0<αx<π,∴0<xα<π,∴xα.
ac,∴cos α(sin x+2sin α)+sin α(cos x+2cos α)=0,
∴sin(xα)+2sin 2α=0,即sin+2sin 2α=0,
sin 2αcos 2α=0,∴tan 2α=-.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网