题目内容
已知函数f(x)=4cos x·sin
+a的最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的单调递增区间.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314132746.png)
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的单调递增区间.
(1)π(2)
,k∈Z
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314163844.png)
(1)f(x)=4cos x·sin
+a=4cos x·
+a=2
sin xcos x+2cos2x-1+1+a=
sin 2x+cos 2x+1+a=2sin
+1+a.
∴当sin
=1时,f(x)取得最大值2+1+a=3+a,
又f(x)的最大值为2,∴3+a=2,即a=-1.
f(x)的最小正周期为T=
=π.
(2)由(1),得f(x)=2sin
,∴-
+2kπ≤2x+
≤
+2kπ,k∈Z,
得-
+2kπ≤2x≤
+2kπ,k∈Z.∴-
+kπ≤x≤
+kπ,k∈Z.
∴f(x)的单调递增区间为
,k∈Z.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314132746.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240403141951168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314226344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314226344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314257817.png)
∴当sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314257817.png)
又f(x)的最大值为2,∴3+a=2,即a=-1.
f(x)的最小正周期为T=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314288465.png)
(2)由(1),得f(x)=2sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314257817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314335421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314351420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314335421.png)
得-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314475491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314491413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314491413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314351420.png)
∴f(x)的单调递增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040314163844.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目